

AP Calculus BC

Topic: Antidifferentiation by Parts

Instructions

Solve the following problems. Show all your work clearly and use the formula for integration by parts:

Practice Problems

- 1. **Basic Integration by Parts:** Evaluate the following integrals using integration by parts:
 - (i) $\int x e^x dx$
 - (ii) $\int x \ln(x) dx$
 - (iii) $\int x \cos(x) dx$
 - (iv) $\int e^x \sin(x) dx$
 - (v) $\int \ln(x) dx$
- 2. Advanced Integration by Parts: Solve the following integrals:
 - (i) $\int x^2 e^x dx$
 - (ii) $\int x^2 \ln(x) dx$
 - (iii) $\int e^x \cos(x) dx$
 - (iv) $\int x^2 \sin(x) dx$
- 3. **Repeated Integration by Parts:** Evaluate the following using repeated application of integration by parts:
 - (i) $\int x^3 e^x dx$

(ii) $\int x^2 \ln(x) dx$

- 4. **Definite Integrals:** Evaluate the following definite integrals using integration by parts:
 - (i) $\int_0^1 x e^x dx$
 - (ii) $\int_1^e \ln(x) dx$
 - (iii) $\int_0^{\pi/2} x \cos(x) dx$
- 5. Applications: The work done by a variable force $F(x) = xe^x$ (in N) acting over a distance [0, 2] (in m) is given by:

$$W = \int_0^2 F(x) dx.$$

Find the work done.

Multiple Choice Questions

- 1. Evaluate $\int x e^x dx$ using integration by parts.
 - a. $e^{x}(x-1) + C$ b. $e^{x}(x+1) + C$ c. $xe^{x} - e^{x} + C$ d. $xe^{x} + e^{x} + C$
- 2. Which of the following is the integral of $\int x^2 \ln(x) dx$?

a.
$$\frac{x^3}{3}\ln(x) - \frac{x^3}{9} + C$$

b. $\frac{x^3}{3}\ln(x) + \frac{x^3}{9} + C$
c. $\frac{x^3}{3} + \ln(x) + C$
d. $x^2\ln(x) - x^2 + C$

- 3. Evaluate $\int_0^1 x \ln(x) dx$ using integration by parts.
 - a. $-\frac{1}{4}$ b. $\frac{1}{2}$ c. $-\frac{1}{2}$ d. 1

Visit our website: Mathaversity.com