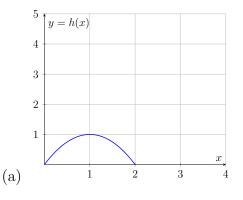
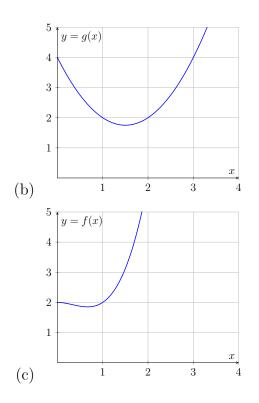
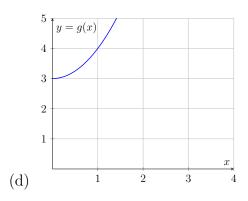


AP Calculus **AB**


Topic: Extreme Values of Functions

Instructions


Solve the following problems. Show all work and include proper mathematical justifications.


Practice Problems

- 1. Find the absolute maximum and minimum values of $f(x) = x^2 4x + 5$ on the interval [0, 3].
- 2. Determine the critical points of $f(x) = x^3 6x^2 + 9x + 1$ and classify them as local maxima, minima, or saddle points.
- 3. Find the extreme values of $f(x) = e^x x^2$ on the interval [0, 2].
- 4. Use the first derivative test to find the local extrema of $f(x) = \ln(x^2 + 1)$.
- 5. Sketch the graph of $f(x) = \sin(x)$ on $[0, 2\pi]$ and label all extreme values.
- 6. Identify each x-value at which any absolute extreme value occurs. Explain how your answer is consistent with the Extreme Value Theorem.

1

Multiple Choice Questions

- 1. What is the derivative of $y = e^x$?
 - a. e^x b. $x \cdot e^x$ c. $\ln(x)$
 - d. 1

2. Which of the following is the derivative of $y = \ln(x)$?

- a. 1/x
- b. $\ln(x)$
- c. e^x
- d. *x*
- 3. The derivative of $y = 2^x$ is:

a.
$$2^x \cdot \ln(2)$$

- b. e^x
- c. $\ln(2)$
- d. $x \cdot 2^x$

Visit our website: Mathaversity.com