

AP Calculus **AB**

Topic: Implicit Differentiation

Instructions

Solve the following problems. Show all work and include proper mathematical justifications. Use implicit differentiation wherever applicable.

Practice Problems

- 1. Differentiate the following equations implicitly:
 - (a) $x^2 + y^2 = 25$
 - (b) $xy + x^2 = y^3$
 - (c) $\sin(xy) = x + y$
- 2. Use implicit differentiation to find $\frac{dy}{dx}$ for:
 - (a) $x^3 + y^3 = 6xy$
 - (b) $e^x \cdot y = \ln(y+x)$
 - (c) $x^2y + y^2x = 1$
- 3. Solve for $\frac{dy}{dx}$ using implicit differentiation:
 - (a) $\cos(xy) = x^2 y^2$
 - (b) $x^2 + y^2 + 2xy = 10$
 - (c) $x^2 \cdot e^y = y^2 \cdot e^x$
- 4. Determine the equation of the tangent line to the curve $x^2 + y^2 = 25$ at the point (3, 4).

- 5. Find $\frac{dy}{dx}$ for $x^2 2xy + y^2 = 7$. Then evaluate $\frac{dy}{dx}$ at the point (2, 1).
- 6. Sketch the graph of the circle $x^2 + y^2 = 25$ and draw the tangent line at the point (3, 4). Indicate the slope of the tangent line.

7. Graph the hyperbola $x^2 - y^2 = 1$ and find the tangent line at the point $(\sqrt{2}, 1)$.

Multiple Choice Questions

- 1. What is the derivative of $x^2 + y^2 = 25$ using implicit differentiation?
 - a. $\frac{-x}{y}$ b. $\frac{-y}{x}$ c. $\frac{y}{x}$ d. $\frac{x}{y}$
- 2. Which of the following is the derivative of xy = 1?
 - a. $\frac{dy}{dx} = -\frac{y}{x}$ b. $\frac{dy}{dx} = \frac{x}{y}$ c. $\frac{dy}{dx} = \frac{-x}{y}$ d. $\frac{dy}{dx} = \frac{y}{x}$
- 3. What is the slope of the tangent line to the curve $x^2 + y^2 = 25$ at (3, 4)?

a. -4/3
b. 3/4
c. -3/4
d. 4/3

4. For the equation $x^3 + y^3 = 6xy$, find $\frac{dy}{dx}$:

a. $\frac{2y-3x^2}{3y^2-2x}$ b. $\frac{3x^2-2y}{2x-3y^2}$ c. $\frac{2x-3y^2}{3x^2-2y}$ d. $\frac{3y^2-2x}{2y-3x^2}$

Visit our website: Mathaversity.com