

AP Calculus BC

Topic: Lengths of Curves

Instructions

Solve the following problems. Show all your work clearly and include units in your answers where appropriate.

Practice Problems

- 1. Find the length of the curve given by the following functions:
 - i. $y = x^2$ for $x \in [0, 2]$.
 - ii. $y = \sqrt{x}$ for $x \in [1, 4]$.
 - iii. $y = \ln(x)$ for $x \in [1, e]$.
- 2. Parametric Curves: Find the arc length of the following parametric curves:

i.
$$x = t^2$$
, $y = t^3$, for $t \in [0, 1]$.

ii. $x = \cos(t), y = \sin(t), \text{ for } t \in [0, \pi/2].$

3. Applications of Arc Length:

- i. Find the length of the curve $y = \sin(x)$ for $x \in [0, \pi]$.
- ii. Find the length of the curve $y = e^x$ for $x \in [0, 1]$.

Multiple-Choice Questions

(a) The arc length of $y = x^2$ on [0, 1] is:

a. $\sqrt{5}$ b. $\frac{\sqrt{5}}{2}$ c. $\frac{3\sqrt{5}}{4}$ d. $\frac{\sqrt{5}}{3}$

(b) The arc length of $y = \ln(x)$ on [1, e] is:

- a. $\ln(e)$
- b. $\sqrt{2}$
- c. $\sqrt{5}$
- d. $\ln(e) + 1$

(c) The arc length of the parametric curve $x = \cos(t)$, $y = \sin(t)$ on $[0, \pi/2]$ is:

a. $\frac{\pi}{2}$ b. 1 c. π d. $\frac{\pi}{4}$

Challenge Problems

1. Find the length of the curve $y = \sqrt{x^3 + 1}$ for $x \in [0, 2]$.

Visit our website: Mathaversity.com