

AP Calculus BC

Topic: Logistic Growth

Instructions

Solve the following problems. Show all your work clearly. Include constants and coefficients for partial fractions, and evaluate integrals where required.

Practice Problems

- 1. **Partial Fraction Decomposition:** Find the values of A and B for the following rational expressions:
 - (i) $\frac{x-10}{x^2-3x} = \frac{A}{x} + \frac{B}{x-3}$
 - (ii) $\frac{5x+8}{x^2+4x-5} = \frac{A}{x-1} + \frac{B}{x+5}$
 - (iii) $\frac{4x-3}{x^2-9} = \frac{A}{x-3} + \frac{B}{x+3}$
- 2. Evaluate the Integral: Evaluate the following integrals using partial fractions:

(i)
$$\int \frac{3x+2}{x^2-5x+6} dx$$

(ii)
$$\int \frac{2x^2}{x^3 - 9x} dx$$

- (iii) $\int \frac{6}{x^2-1} dx$
- 3. Solve the Differential Equation: Solve the following differential equations:

(i)
$$\frac{dy}{dx} = \frac{4x}{x^2 - 3x}$$

(ii) $F'(x) = \frac{2x}{x^2 + x - 6}$
(iii) $G'(t) = \frac{t^2}{t^3 - 4t}$

- 4. Integrate Without Partial Fractions: Find the integral directly (without decomposing into partial fractions):
 - (i) $\int \frac{x^2+3}{x^2-x} dx$
 - (ii) $\int \frac{3x^2}{x^3 x^2} dx$
 - (iii) $\int \frac{x^2 + 2x + 1}{x^2 3x + 2} dx$
- 5. **Basic Logistic Growth Model:** Solve the following differential equations for logistic growth:
 - (i) $\frac{dP}{dt} = 0.2P(1 \frac{P}{50})$, with P(0) = 5.
 - (ii) $\frac{dP}{dt} = 0.1P(1 \frac{P}{100})$, with P(0) = 10.
 - (iii) $\frac{dN}{dt} = 0.3N(1 \frac{N}{300})$, with N(0) = 20.
 - (iv) $\frac{dP}{dt} = 0.05P(1 \frac{P}{200})$, with P(0) = 50.

6. Real-World Applications:

(i) A population of fish in a lake grows according to the logistic equation:

$$\frac{dP}{dt} = 0.1P\left(1 - \frac{P}{500}\right),$$

where P is the population size and t is time in years. If the initial population is 50, find the population size after 10 years.

(ii) A bacterial culture grows according to the logistic equation:

$$\frac{dP}{dt} = 0.5P\left(1 - \frac{P}{1000}\right).$$

If the initial population is 200, determine the limiting population size.

Multiple Choice Questions

1. Which of the following is the correct partial fraction decomposition of $\frac{3x+7}{x^2-4}$?

a.
$$\frac{A}{x+2} + \frac{B}{x-2}$$

b.
$$\frac{A}{x-2} + \frac{B}{x^2-2}$$

c.
$$\frac{A}{x} + \frac{B}{x^2-4}$$

d.
$$\frac{A}{x-1} + \frac{B}{x+2}$$

2. Evaluate $\int \frac{4x}{x^2-1} dx$ using partial fractions.

a. $\ln|x+1| - \ln|x-1| + C$

- b. $\ln|x-1| + \ln|x+1| + C$
- c. $2\ln|x-1| + C$
- d. $2\ln|x+1| + C$

- 3. Which of the following represents the general solution of the logistic equation $\frac{dP}{dt} = kP(1 \frac{P}{K})?$
 - a. $P(t) = \frac{K}{1+Ce^{-kt}}$ b. $P(t) = \frac{K}{1-Ce^{kt}}$ c. $P(t) = \frac{K}{1+Ce^{kt}}$ d. $P(t) = \frac{K}{1-Ce^{-kt}}$

4. Solve $\int \frac{6}{x^2-9} dx$ using partial fractions.

- a. $\ln |x+3| \ln |x-3| + C$ b. $\frac{1}{3} \ln |x+3| + \ln |x-3| + C$ c. $\ln |x-3| + \ln |x+3| + C$
- d. $\frac{1}{2} \ln |x+3| + \frac{1}{2} \ln |x-3| + C$

Visit our website: Mathaversity.com