

# **AP** Calculus **BC**

## **Topic:** Parametric Functions

#### Instructions

Solve the following problems involving parametric equations. Eliminate parameters where required, compute derivatives, and sketch graphs where applicable. Show all work for full credit.

#### **Practice Problems**

- 1. Sketch the parametric curves and eliminate the parameter to express y as a function of x:
  - (i) x = 3t + 1, y = 2t 4 for  $t \in [0, 4]$ .
  - (ii)  $x = \sqrt{t-1}, y = \frac{t-2}{3}$  for  $t \in [1, 5]$ .
  - (iii)  $x = \tan(t), y = \sec^2(t)$  for  $t \in [0, \frac{\pi}{6}]$ .
  - (iv)  $x = \sin(2t), y = \cos(3t)$  for  $t \in [0, \pi]$ .
  - (v)  $x = t^2, y = t^3$  for  $t \in [0, 2]$ .
  - (vi)  $x = 5\sin(t), y = 3\cos(t)$  for  $t \in [0, \frac{\pi}{2}]$ .
- 2. Find (a)  $\frac{dy}{dx}$  and (b)  $\frac{d^2y}{dx^2}$  in terms of t:
  - (i)  $x = t^2 + 1, y = t^3 2.$
  - (ii)  $x = e^t, y = e^{-t}$ .
  - (iii)  $x = \cos(t), y = \sin(2t).$
  - (iv)  $x = \ln(t), y = t^2$ .
  - (v)  $x = t^3 3t, y = t^2 + 1.$

(vi)  $x = \sqrt{t}, y = \ln(t)$ .

- 3. Determine the arc length of the parametric curve for the given intervals:
  - (i)  $x = t, y = t^2, t \in [0,3].$
  - (ii)  $x = \cos(t), y = \sin(t), t \in [0, \pi].$
  - (iii)  $x = e^t, y = e^{-t}, t \in [0, 1].$

## **Challenge Problem**

1. A particle's motion is described by  $x(t) = t^2 - 4t + 3$  and  $y(t) = t^3 - 6t^2 + 11t$ . Find the points where the particle changes direction and determine the type of extrema (local max, local min, or neither) for the path of the particle.

### Multiple Choice Questions

- 1. For the parametric equations  $x(t) = t^2$  and  $y(t) = t^3$ , the value of  $\frac{dy}{dx}$  at t = 2 is:
  - a. 6
  - b. 12
  - c. 4
  - d. 3

2. For  $x(t) = e^t$  and  $y(t) = e^{-t}$ , the slope  $\frac{dy}{dx}$  at t = 0 is:

- a. -1
- b. 1
- c. 0
- d. 2

3. The parametric equations  $x(t) = \cos(t)$  and  $y(t) = \sin(t)$  represent:

- a. A parabola
- b. A line
- c. A circle
- d. An ellipse
- 4. The arc length of the parametric curve  $x(t) = \sin(t)$  and  $y(t) = \cos(t)$  over  $t \in [0, 2\pi]$  is:
  - a.  $2\pi$
  - b.  $\pi$
  - c. 1
  - d.  $4\pi$

#### Visit our website: Mathaversity.com