

AP Calculus BC

Topic: Polar Functions

Instructions

Solve the following problems related to polar functions. Convert coordinates where required and identify graphs using polar equations. Show all your work for full credit.

Practice Problems

- 1. Plot each point with the given polar coordinates and find the corresponding rectangular coordinates:
 - (i) $(\sqrt{3}, \frac{\pi}{3})$ (iv) $(-2, \frac{5\pi}{4})$ (ii) $(2, \pi)$ (iii) $(-3, \frac{2\pi}{3})$ (v) $(1, -\frac{\pi}{6})$
- 2. Plot each point with the given rectangular coordinates and find two sets of corresponding polar coordinates:
 - (i) $(-2, -\sqrt{2})$ (iv) $(3, \sqrt{5})$ (ii) $(\sqrt{3}, -1)$ (v) (0, -4)
- 3. Graph the set of points whose polar coordinates satisfy the given equation:

- (i) r = 2 (iv) $\theta = \pi/3$
- (ii) r = -4
- (iii) $r^2 = 5$ (v) $r^2 + 2r = 6$
- 4. Find an appropriate window and use a graphing calculator to produce the polar curve. Then sketch the complete curve and identify the type of curve by name:

(i) $r = 1 + \cos \theta$	(v) $r = \sin \theta$
(ii) $r = 3 - 2\cos\theta$	(vi) $r = 2\cos\theta$
(iii) $r = 2 - \sin 2\theta$	(vii) $r = 1 + 3\sin\theta$
(iv) $r = 4\cos 2\theta$	(viii) $r = 5 - 2\sin 2\theta$

5. Use analytic methods to replace the polar equation by an equivalent Cartesian (rectangular) equation. Then identify or describe the graph without using a grapher:

(i) $r = 3\cos\theta$	(iv) $r = 4\sin\theta$
(ii) $r^2 = 16\sin\theta$	(v) $r\cos\theta + r\sin\theta = 2$
(iii) $\theta = \pi/4$	(vi) $r^2 = 2r\cos\theta$

6. Calculate the area of the regions bounded by the given polar curves:

- (i) Inside the cardioid $r = 3 + 2\cos\theta$
- (ii) Inside one petal of the rose curve $r = 2 \sin 3\theta$
- (iii) Shared by the circles $r = 2\cos\theta$ and $r = 2\sin\theta$
- (iv) Inside the lemniscate $r^2 = 4\cos 2\theta$
- 7. Plot the following polar graphs and label key points. Use a graphing calculator or plotting software if needed:

(i) $r = 1 + 2\sin\theta$	(iii) $r = 4\sin 2\theta$
(ii) $r = 2 - 3\cos\theta$	(iv) $r^2 = 9\cos 2\theta$

Challenge Problem

A particle moves in the plane such that its position at time t is given in polar coordinates by $r(t) = 2 + \sin t$ and $\theta(t) = \pi/4t$. Find:

- (i) The particle's velocity vector at $t = \pi$
- (ii) The total distance traveled by the particle for $t \in [0, 2\pi]$

Visit our website: Mathaversity.com