

AP Calculus BC

Topic: Power Series

Instructions

Solve the following problems. Show all your work clearly.

Practice Problems

1. Determine the interval of convergence for the following power series:

(i)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$

(ii)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n+1}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

2. Find the radius of convergence for the given power series:

(i)
$$\sum_{n=0}^{\infty} \frac{(2x)^n}{n!}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{x^{2n}}{n}$$

(iii)
$$\sum_{n=0}^{\infty} \frac{n!x^n}{3^n}$$

3. Expand the following functions into their Maclaurin series:

(i) $f(x) = e^x$ (ii) $f(x) = \sin(x)$ (iii) $f(x) = \ln(1+x)$

4. Use a power series to approximate the following integrals:

(i)
$$\int_{0}^{0.1} e^{-x^2} dx$$
 (use the first three terms of the series)
(ii) $\int_{0}^{1} \ln(1+x) dx$ (use the first four terms of the series)

5. Determine whether the following series converge or diverge:

(i)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^3}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} x^n$$

Challenge Problem

1. Prove that the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges to e^x for all $x \in \mathbb{R}$.

Multiple Choice Questions

- 1. What is the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$?
 - a. 0
 - b. 1
 - c. ∞
 - d. None of the above

2. What is the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$?

- a. (-1, 1)
- b. [-1, 1]
- c. $(-\infty,\infty)$
- d. None of the above
- 3. Which of the following is the Maclaurin series for sin(x)?

a.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

b.
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

c.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

- d. None of the above
- 4. What is the sum of the series $\sum_{n=0}^{\infty} \frac{1}{2^n}$?
 - a. 2
 - b. 1
 - c. ∞
 - d. None of the above

Visit our website: Mathaversity.com