

AP Calculus BC

Topic: Relative Rates of Growth

Instructions

Solve the following problems. Show all your work clearly.

Practice Problem

1. Compare the growth rates of the following functions as $x \to \infty$:

(i)
$$f(x) = \ln(x)$$
 and $g(x) = \sqrt{x}$

- (ii) $f(x) = e^x$ and $g(x) = x^3$
- (iii) f(x) = x! and $g(x) = 2^x$
- 2. Determine whether the following limits exist. If they do, evaluate them:
 - (i) $\lim_{x \to \infty} \frac{\ln(x)}{x}$ (ii) $\lim_{x \to \infty} \frac{x^2}{e^x}$
 - (iii) $\lim_{x \to \infty} \frac{x!}{x^x}$
- 3. Rank the following functions by their relative rates of growth as $x \to \infty$:
 - (i) $x^2, \ln(x), e^x, x!$
 - (ii) $2^x, x^3, \sqrt{x}, e^{2x}$
 - (iii) $\ln(x^2), x, \ln(\ln(x))$
- 4. For the functions $f(x) = x^2$ and $g(x) = e^x$:
 - (i) Compute $\lim_{x \to \infty} \frac{f(x)}{g(x)}$.

- (ii) Interpret the result in terms of the relative rates of growth of f and g.
- 5. Evaluate the following limits using L'Hôpital's Rule to analyze relative growth rates:
 - (i) $\lim_{x \to \infty} \frac{e^x}{x^3}$
 - (ii) $\lim_{x \to \infty} \frac{\ln(x)}{x^2}$
 - (iii) $\lim_{x \to \infty} \frac{x^x}{e^{x^2}}$

Challenge Problems

1. Prove that $\lim_{x\to\infty} \frac{\ln(x)}{x^p} = 0$ for any p > 0.

Multiple Choice Questions

- 1. Which function grows faster as $x \to \infty$?
 - a. $f(x) = x^2$
 - b. $g(x) = 2^x$
 - c. They grow at the same rate.
 - d. None of the above.

2. What is
$$\lim_{x \to \infty} \frac{e^x}{x^x}$$
?

- a. 0
- b. 1
- c. ∞
- d. Does not exist
- 3. Which of the following statements is true?
 - a. x^3 grows faster than e^x .
 - b. $\ln(x)$ grows faster than x^2 .
 - c. x! grows faster than 2^x .
 - d. None of these.

4. Evaluate $\lim_{x\to\infty} \frac{\ln(\ln(x))}{\ln(x)}$:

- a. 0
- b. 1
- c. ∞
- d. Does not exist

Visit our website: Mathaversity.com