

AP Calculus BC

Topic: Sequences

Instructions

Solve the following problems. Show all your work clearly. Include explanations where necessary.

Practice Problems

- 1. Determine whether the sequence converges or diverges. If it converges, find its limit:
 - (i) $a_n = \frac{1}{n}$
 - (ii) $a_n = \frac{2n+3}{5n-1}$
 - (iii) $a_n = (-1)^n \cdot \frac{n}{n+1}$
- 2. Find the general formula for the nth term of the sequence:
 - (i) $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$
 - (ii) $2, 4, 8, 16, \ldots$
 - (iii) $5, 10, 17, 26, \ldots$
- 3. Given the sequence $a_n = \frac{1}{n^2}$, find:
 - (i) The sum of the first 10 terms.
 - (ii) Whether the sequence converges or diverges.
- 4. Find the first four terms and determine whether the sequence is arithmetic, geometric, or neither:

(i) $a_n = 3n + 1$

- (ii) $a_n = 2 \cdot 3^n$
- (iii) $a_n = \frac{n^2 1}{n+1}$

5. Evaluate the following limits to determine the behavior of the sequences:

(i)
$$\lim_{n \to \infty} \frac{2n+1}{n-3}$$

(ii)
$$\lim_{n \to \infty} \frac{(-1)^n}{n}$$

(iii)
$$\lim_{n \to \infty} \frac{\sin(n)}{n^2}$$

 $(\prod) \quad \lim_{n \to \infty} \quad n^2$

6. A sequence is defined recursively by $a_1 = 2$ and $a_{n+1} = \frac{a_n}{2} + 1$. Find:

- (i) The first five terms of the sequence.
- (ii) Whether the sequence converges or diverges.

Challenge Problem

1. A sequence a_n is defined as $a_1 = 1$, and $a_{n+1} = \frac{a_n+2}{a_n+3}$ for $n \ge 1$. Prove that the sequence converges and find its limit.

Multiple Choice Questions

1. What is the limit of the sequence $a_n = \frac{5n}{n+2}$ as $n \to \infty$?

- a. 5
- b. 2
- c. 0
- d. Diverges
- 2. Which of the following sequences is geometric?
 - a. $1, 4, 9, 16, \ldots$
 - b. $2, 6, 18, 54, \ldots$
 - c. $5, 10, 15, 20, \ldots$
 - d. None of these
- 3. The sequence $a_n = \frac{n}{n+1}$:
 - a. Converges to 1
 - b. Diverges
 - c. Oscillates
 - d. Converges to 0

Visit our website: Mathaversity.com