

AP Calculus BC

Topic: Taylor Series

Instructions

Solve the following problems. Show all your work clearly. Include explanations where necessary.

Practice Problems

- 1. Find the Taylor series expansion for the following functions about x = 0:
 - (i) $f(x) = e^x$

(ii)
$$f(x) = \cos(x)$$

- (iii) $f(x) = \ln(1+x)$
- 2. Determine the radius of convergence and interval of convergence for the following Taylor series:

(i)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$$

(iii)
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

3. Approximate the value of the following using the first four terms of the Taylor series:

(i)
$$e^{0.5}$$

(ii) $\sin(\frac{\pi}{6})$

- (iii) $\ln(1.1)$
- 4. Find the Taylor polynomial of degree 3 for the function $f(x) = \sin(x)$ about x = 0. Use this polynomial to approximate $\sin(0.2)$.
- 5. Prove that the Taylor series for $f(x) = \frac{1}{1-x}$ about x = 0 converges to f(x) for |x| < 1.

Challenge Problem

1. Show that the Taylor series for $f(x) = \arctan(x)$ about x = 0 converges to f(x) for $|x| \le 1$.

Multiple Choice Questions

1. What is the Taylor series expansion for $f(x) = \cos(x)$ about x = 0?

a.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

b.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

c.
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

d. None of the above

2. The radius of convergence of the Taylor series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ is:

- a. 1
- b. ∞
- c. 0
- d. None of the above
- 3. Which of the following functions has a Taylor series expansion that converges for all $x \in \mathbb{R}$?
 - a. $f(x) = \frac{1}{1+x}$
 - b. $f(x) = \sin(x)$
 - c. $f(x) = \ln(1+x)$
 - d. None of the above

Visit our website: Mathaversity.com