

AP Calculus BC

Topic: Taylor's Theorem

Instructions

Solve the problems below to practice applying Taylor's Theorem. Clearly justify your steps, and include error bounds wherever applicable.

Practice Problems

- 1. Find the Taylor polynomial of degree 4 for the following functions about x = 0:
 - (i) $f(x) = e^x$
 - (ii) $f(x) = \sin(x)$
 - (iii) $f(x) = \ln(1+x)$
- 2. Use Taylor's Theorem to find an upper bound for the error when approximating $\sin(0.1)$ using the third-degree Taylor polynomial about x = 0.
- 3. Approximate $e^{0.5}$ using the second-degree Taylor polynomial for $f(x) = e^x$ about x = 0. Find the error bound using Taylor's Theorem.
- 4. Determine the degree of the Taylor polynomial required to approximate $\cos(0.2)$ with an error less than 0.001 using Taylor's Theorem.
- 5. Prove that the Taylor series for $f(x) = \frac{1}{1-x}$ about x = 0 converges to f(x) for |x| < 1 using Taylor's Theorem.

Challenge Problem

1. Show that the Taylor series for $f(x) = e^x$ about x = 0 converges to f(x) for all $x \in \mathbb{R}$ and provide the error bound for $|x| \leq 2$ when using the fourth-degree Taylor polynomial.

Multiple Choice Questions

- 1. What is the remainder term in Taylor's Theorem?
 - a. $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$, where c is between 0 and x
 - b. $R_n(x) = \frac{f^{(n)}(c)}{n!} x^n$, where c is between 0 and x
 - c. $R_n(x) = \frac{f'(c)}{n!} x^{n+1}$, where c is between 0 and x
 - d. None of the above
- 2. What is the Taylor polynomial of degree 3 for $f(x) = \cos(x)$ about x = 0?
 - a. $1 \frac{x^2}{2} + \frac{x^4}{24}$ b. $1 - \frac{x^2}{2} + \frac{x^3}{6}$ c. $1 - \frac{x^2}{2}$
 - d. None of the above
- 3. Which of the following is a correct Taylor polynomial of degree 2 for $f(x) = \ln(1+x)$ about x = 0?
 - a. $x \frac{x^2}{2}$ b. $1 + x - \frac{x^2}{2}$ c. $x + \frac{x^2}{2}$
 - d. None of the above
- 4. What is the error bound for approximating e^x using the third-degree Taylor polynomial for $|x| \leq 1$?
 - a. $\frac{e}{6}$ b. $\frac{1}{6}$ c. $\frac{e}{24}$ d. None of the above

Visit our website: Mathaversity.com