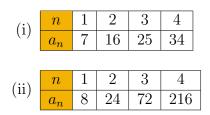


Algebra 1


Topic: Recursively Defined Sequences

Instructions

Solve the following problems related to recursively defined sequences. Show all steps clearly and check your solutions.

Practice Problems

- 1. Determine whether the recursive rule represents an arithmetic sequence or a geometric sequence.
 - (i) $a_1 = 2, a_n = 7a_{n-1}$ (iii) $a_1 = 10, a_n = 18a_{n-1} + 1$
 - (ii) $a_1 = 5, a_n = a_{n-1} 4$ (iv) $a_1 = 3, a_n = 6a_{n-1}$
- 2. Write the first six terms of the sequence. Then graph the sequence.
 - (i) $a_1 = 0, a_n = a_{n-1} + 2$ (iv) $a_1 = 8, a_n = 1.5a_{n-1}$
 - (ii) $a_1 = 10, a_n = a_{n-1} 5$ (v) $a_1 = 80, a_n = -\frac{1}{2}a_{n-1}$
 - (iii) $a_1 = 2, a_n = 3a_{n-1}$ (vi) $a_1 = -7, a_n = -4a_{n-1}$
- 3. Write a recursive rule for the sequence.

- (iii) $243, 81, 27, 9, \ldots$
- (iv) $3, 11, 19, 27, 35, \ldots$

4. Identify whether the sequence is arithmetic, geometric, or neither.

- (i) $5, 10, 15, 20, 25, \ldots$ (iv) $7, 11, 15, 19, 23, \ldots$ (ii) $2, 6, 18, 54, 162, \ldots$
- (iii) $3, 6, 12, 24, 48, \ldots$ (v) $1, 3, 9, 27, 81, \ldots$

5. Write an explicit rule for the recursive rule.

- (i) $a_1 = -2, a_n = a_{n-1} + 4$ (iv) $a_1 = 7, a_n = -a_{n-1} + 5$ (ii) $a_1 = 8, a_n = a_{n-1} 6$ (v) $a_1 = 10, a_n = 0.5a_{n-1}$
- (iii) $a_1 = 3, a_n = 2a_{n-1} + 3$ (vi) $a_1 = -3, a_n = 2a_{n-1} 1$

6. Write a recursive rule for the explicit rule.

(i) $a_n = 3n - 1$	(iv) $a_n = 6n - 4$
(ii) $a_n = 2n + 5$	(v) $a_n = 0.5n + 7$
(iii) $a_n = 4n - 8$	(vi) $a_n = 5n - 3$

7. Graph the first four terms of the sequence with the given description. Write a recursive rule and an explicit rule for the sequence.

- (i) The first term of a sequence is 3. Each term of the sequence is 4 more than the preceding term.
- (ii) The first term of a sequence is 12. Each term of the sequence is half the preceding term.
- (iii) The first term of a sequence is -2. Each term of the sequence is 3 times the preceding term.
- (iv) The first term of a sequence is 10. Each term of the sequence is 5 less than the preceding term.

Multiple-Choice Questions

1. What is the recursive formula for the sequence $2, 4, 6, 8, 10, \ldots$?

A. $a_1 = 2, a_n = a_{n-1} + 2$	C. $a_1 = 2, a_n = a_{n-1} - 2$
B. $a_1 = 2, a_n = 2a_{n-1}$	D. $a_1 = 2, a_n = 3a_{n-1}$

2. What is the value of a_6 in the sequence defined by $a_1 = 3$ and $a_n = a_{n-1} \cdot 2$?

A. 48).	192	
A. 48).	192	

B. 96 D. 384

- 3. What is the recursive formula for the sequence $3, 9, 27, 81, 243, \ldots$?
 - A. $a_1 = 3, a_n = a_{n-1} + 3$ C. $a_1 = 3, a_n = 3a_{n-1}$ B. $a_1 = 3, a_n = a_{n-1} \cdot 3$ D. $a_1 = 3, a_n = a_{n-1} \cdot 3 + 2$

4. Find the first term of the sequence where $a_1 = 4$ and $a_n = 3a_{n-1} - 1$ for $n \ge 2$.

5. What is the recursive formula for the sequence $5, 10, 20, 40, 80, \ldots$?

A.
$$a_1 = 5, a_n = 2a_{n-1}$$

B. $a_1 = 5, a_n = a_{n-1} + 5$
C. $a_1 = 5, a_n = 3a_{n-1}$
D. $a_1 = 5, a_n = a_{n-1} \cdot 5$

Visit our website: Mathaversity.com