

Precalculus

Topic: Laws of Logarithms

Instructions

Solve the following problems related to the laws of logarithms. Show all work clearly and check your solutions.

Practice Problems

1. Apply the laws of logarithms to simplify the following expressions:

(i)
$$\log_3 27 + \log_3 9$$

(v)
$$\log_7 49 + \log_7 7$$

(ii)
$$\log_5 125 - \log_5 5$$

(vi)
$$\log_2 \sqrt{32} + \log_2 \sqrt{2}$$

(iii)
$$\log_2 32 + \log_2 4$$

(vii)
$$\frac{1}{2}\log_3 81 + \log_3 3$$

(iv)
$$3\log_2 8 - \log_2 16$$

(viii)
$$\log_2\left(\frac{8}{4}\right) + \log_2 16$$

2. Use the laws of logarithms to solve the following real-world problems:

- (i) The population of a bacteria culture grows according to the formula $P(t) = 5000e^{0.3t}$. Find the time required for the population to reach 15000.
- (ii) A car's value depreciates according to the formula $V(t) = 20000e^{-0.1t}$, where t is the time in years. How much is the car worth after 5 years?
- 3. Express the following logarithms as single logarithms using the laws of logarithms:

1

(i)
$$\log_2 8 + \log_2 16$$

(v)
$$3\log_2 2 + \log_2 4$$

(ii)
$$\log_5 25 - \log_5 5$$

(vi)
$$\log_3 3 + \frac{1}{2} \log_3 81$$

(iii)
$$2 \log_3 3 - \log_3 9$$

(iv) $4 \log_4 x - \log_4 x$

(vii)
$$\log_2 16 - \log_2 8 + \log_2 2$$

4. Using the change of base formula, convert the following logarithms to base 10 (common logarithms):

(i)
$$\log_2 16$$

(iv)
$$\log_7 49$$

(ii)
$$\log_3 81$$

(v)
$$\log_4 64$$

Multiple-Choice Questions

1. Which of the following is the correct application of the product rule for logarithms?

A.
$$\log_b(x+y) = \log_b x + \log_b y$$

C.
$$\log_b(x^y) = y \log_b x$$

B.
$$\log_b(xy) = \log_b x + \log_b y$$

D.
$$\log_b x = \log_x b$$

2. Which of the following is the correct application of the quotient rule for logarithms?

A.
$$\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$$

C.
$$\log_b x = \frac{1}{\log_x b}$$

B.
$$\log_b \left(\frac{x}{y}\right) = \log_b x + \log_b y$$

D.
$$\log_b \left(\frac{x}{y}\right) = \frac{1}{\log_b x} + \log_b y$$

3. Which of the following is the correct application of the power rule for logarithms?

A.
$$\log_b(x^y) = y \log_b x$$

C.
$$\log_b(x^y) = \frac{1}{y} \log_b x$$

B.
$$\log_b(x^y) = \log_b x + y$$

D.
$$\log_b x = y \log_b x$$

4. What is the value of $\log_3 27$?

Visit our website: Mathaversity.com