

Precalculus

Topic: Vectors in Two Dimensions

Instructions

Solve the following problems related to vectors in two dimensions. Show all work clearly and check your solutions.

Practice Problems

1. Sketch the given vector with initial point (4,3), and find the terminal point.

(i)
$$\mathbf{u} = \langle 2, 4 \rangle$$

(iii)
$$\mathbf{u} = \langle 4, -3 \rangle$$

(ii)
$$\mathbf{u} = \langle -1, 2 \rangle$$

(iv)
$$\mathbf{u} = \langle -8, -1 \rangle$$

2. Sketch representations of the given vector with initial points at (0,0), (2,3), and (3,5).

(i)
$$\mathbf{u} = \langle 3, 5 \rangle$$

(iii)
$$\mathbf{u} = \langle 0, -9 \rangle$$

(ii)
$$\mathbf{u} = \langle -7, 2 \rangle$$

(iv)
$$\mathbf{u} = \langle 3, 0 \rangle$$

3. Write the given vector in terms of i and j.

(i)
$$\mathbf{u} = \langle 1, 4 \rangle$$

(iii)
$$\mathbf{u} = \langle 3, 0 \rangle$$

(ii)
$$\mathbf{u} = \langle -2, -10 \rangle$$

(iv)
$$\mathbf{u} = \langle 0, -5 \rangle$$

4. Find 2u, -3v, u + v, and 3u - 4v for the given vectors u and v.

1

(i) $\mathbf{u} = \langle 2, 7 \rangle, \mathbf{v} = (3, 1)$

(iii) $\mathbf{u} = \langle 0, -1 \rangle, \mathbf{v} = (-2, 0)$

(ii) $\mathbf{u} = \langle -2, -5 \rangle, \mathbf{v} = \langle 2, -8 \rangle$ (iv) $\mathbf{u} = i, v = -2i$

5. Find $|\mathbf{u}|$, $|\mathbf{v}|$, $2|\mathbf{v}|$, $|\mathbf{u} + \mathbf{v}|$, and $|\mathbf{u} - \mathbf{v}|$.

(i) $\mathbf{u} = 2i + j, \mathbf{v} = 3i - 2j$

(iii) $\mathbf{u} = \langle 4, -5 \rangle, \mathbf{v} = \langle 5, 6 \rangle$

(ii) $\mathbf{u} = \langle 2, -1 \rangle, \mathbf{v} = \langle -3, 1 \rangle$

(iv) $\mathbf{u} = \langle -1, 4 \rangle, \mathbf{v} = \langle 3, -2 \rangle$

6. Find the horizontal and vertical components of the vector with the given length and direction, and write the vector in terms of i and j.

(i) $|\mathbf{v}| = 40, \theta = 30^{\circ}$

(iii) $|\mathbf{v}| = 80, \theta = 150^{\circ}$

(ii) $|\mathbf{v}| = 60, \theta = 120^{\circ}$

(iv) $|\mathbf{v}| = 100, \theta = 90^{\circ}$

7. Find the magnitude and direction of the following vectors.

(i) $\mathbf{v} = \langle 10, 6 \rangle$

(vi) $\mathbf{v} = \langle \frac{-\sqrt{2}}{2}, \frac{-\sqrt{2}}{2} \rangle$

(ii) $\mathbf{v} = \langle -6, 8 \rangle$

(vii) $\mathbf{v} = \langle -12, 5 \rangle$

(iii) $\mathbf{v} = \langle (5, -7) \rangle$

(viii) $\mathbf{v} = \langle 40, 9 \rangle$

(iv) $\mathbf{v} = \langle -4, -2 \rangle$

(ix) $\mathbf{v} = i + \sqrt{3}i$

(v) $\mathbf{v} = \langle 3, 4 \rangle$

(x) $\mathbf{v} = i + j$

Multiple Chioce Questions

(1) What is the parametric form of the equation of a circle with radius 3 centered at the origin?

(a) $x = 3\cos t, y = 3\sin t$

(b) $x = 3\cos t, y = 3\cos t$

(c) $x = 3\sin t, y = 3\cos t$

(d) $x = 3\cos t, y = -3\sin t$

(2) What is the rectangular equation obtained by eliminating the parameter from the following parametric equations?

$$x = t^2, y = 2t + 1$$

(a) $x = y^2 - 1$

(b) $x = y^2 + 1$

(c) $x = 2u^2 + 1$

(d) $x = y^2 - 2$

(3) For the parametric equations $x = 2t, y = t^2$, what is the shape of the graph?

(a) Circle

- (b) Parabola
- (c) Ellipse
- (d) Hyperbola
- (4) Which of the following parametric equations represents the equation of a straight line with slope 3 passing through the origin?
 - (a) x = t, y = 3t
 - (b) x = 3t, y = t
 - (c) x = t + 3, y = 3t + 3
 - (d) $x = t^2, y = 3t^2$

Visit our website: Mathaversity.com