

O Level Maths

Topic: Linear, Quadratic, and Cubic Graphs

Instructions

Answer all questions. Show working where necessary. Sketch the graphs for the given functions and solve the problems related to linear, quadratic, and cubic graphs.

Practice Problems

Linear Graphs:

- 1. Sketch the graph of y = 2x + 3.
- 2. Plot the graph for y = -x + 4, and find the x-intercept.
- 3. For the equation 3x 2y = 6, find the slope and y-intercept. Then, sketch the graph.
- 4. Plot the graph of y = 4x 5 and find the slope and y-intercept.

Quadratic Graphs:

- 1. Sketch the graph of $y = x^2 4x + 3$.
- 2. For the quadratic equation $y = x^2 + 2x 8$, find the vertex and axis of symmetry. Sketch the graph.
- 3. Find the x-intercepts of the quadratic equation $y = x^2 6x + 9$ and sketch the graph.
- 4. Plot the graph of $y = -x^2 + 2x + 3$ and identify the vertex and direction of the parabola.

Cubic Graphs:

- 1. Sketch the graph of $y = x^3 3x$.
- 2. Plot the graph of $y = x^3 + 2x^2 x$ and find the inflection point.
- 3. For the cubic equation $y = -x^3 + 4x$, find the roots and sketch the graph.
- 4. Sketch the graph of $y = 2x^3 4x^2 + 3x$, and identify the turning points.

Word Problems

- 1. A company's profit function is given by $P(x) = -x^2 + 6x 8$, where x is the number of units sold. Find the number of units sold that will maximize the profit and sketch the profit function.
- 2. A car's speed s in kilometers per hour is modeled by the equation $s = 2x^3 3x^2 + 5$, where x is the time in hours. Find the speed at x = 2 hours.
- 3. A parabola models the path of a ball thrown into the air, given by the equation $h(t) = -5t^2 + 20t + 10$, where t is time in seconds and h(t) is height in meters. Find the maximum height of the ball.

Multiple-Choice Questions

- 1. What is the vertex of the quadratic function $y = x^2 6x + 8$?
 - A. (3, -1)
 - B. (-3,8)
 - C. (3,8)
 - D. (-3, -1)
- 2. What is the x-intercept of the graph of y = 2x + 4?
 - A. x = -2
 - B. x = 2
 - C. x = 0
 - D. x = -4
- 3. Which of the following is the equation of the cubic function that passes through the origin and has an inflection point at x = 1?

2

- $A. \ y = x^3 3x$
- B. $y = x^3 + 2x^2 x$
- C. $y = 2x^3 4x$
- D. $y = -x^3 + 4x$

- 4. What is the turning point of the cubic equation $y = x^3 3x^2 4x + 12$?
 - A. (2, -4)
 - B. (-2,4)
 - C. (0, 12)
 - D. (1,7)
- 5. What is the general shape of the cubic graph of $y = -x^3 + 3x^2$?
 - A. An upward-opening parabola
 - B. A downward-opening parabola
 - C. A symmetric curve with one turning point
 - D. A curve with two turning points and an inflection point
- 6. Which of the following is the correct form of the quadratic equation for a parabola with a vertex at (2,5)?
 - A. $y = (x-2)^2 + 5$
 - B. $y = x^2 + 2x + 5$
 - C. $y = x^2 4x + 5$
 - D. $y = x^2 + 4x 5$

Visit our website: Mathaversity.com