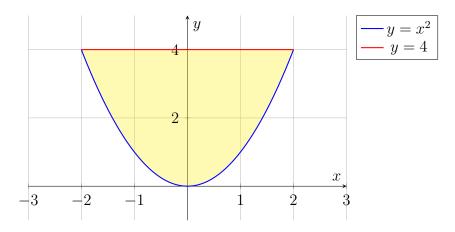


A Level Maths


Topic: Area Under Curves

Instructions

Answer all questions. Show complete working. Use definite integrals where appropriate.

Practice Questions

- 1. Find the area under the curve $y = x^2 + 3$ between x = 1 and x = 4.
- 2. Calculate the area bounded by the curve $y = \sin x$, the x-axis, and the lines x = 0 and $x = \pi$.
- 3. Determine the total area enclosed between $y = x^2$ and y = 4.

- 4. A curve is defined by $y = 3x^3$. Find the area under the curve from x = 0 to x = 2.
- 5. The region between y = 2x and $y = x^2$ is bounded between their points of intersection. Find the area of this region.
- 6. Calculate the area under the curve $y = \ln x$ from x = 1 to x = e.

- 7. Evaluate the area under the curve $y = 5e^x$ between x = 0 and x = 1.
- 8. The curve $y = \frac{1}{x}$ is bounded between x = 1 and x = 4. Find the area under the curve.

Multiple-Choice Questions

- 1. The area under $y = 3x^2$ from x = 0 to x = 2 is:
 - A. 6
 - B. 8
 - C. 12
 - D. 16
- 2. Which integral gives the area under $y = \cos x$ from x = 0 to $x = \frac{\pi}{2}$?
 - A. $\int_0^\pi \cos x \, dx$
 - B. $\int_0^{\frac{\pi}{2}} \cos x \, dx$
 - C. $\int_0^{\frac{\pi}{2}} \sin x \, dx$
 - $D. \int_{\frac{\pi}{2}}^{0} \cos x \, dx$
- $3. \int_1^e \ln x \, dx =$
 - A. 1
 - B. e
 - C. e 1
 - D. $e \ln e 1$
- 4. The area between y = x and $y = x^2$ from x = 0 to x = 1 is:
 - A. $\frac{1}{6}$
 - B. $\frac{1}{3}$
 - C. $\frac{1}{2}$
 - D. $\frac{2}{3}$
- 5. The area under y = 1/x from x = 1 to x = 4 is:
 - A. 2
 - B. ln 4
 - C. $\ln(4) 1$
 - D. ln(4) + 1