

A Level Maths

Topic: Constant Acceleration Equations (SUVAT)

Instructions

Answer all questions. Show complete working. Use the SUVAT equations where applicable.

Practice Questions

- 1. A car accelerates from rest at a constant acceleration of $2\,\mathrm{m/s}^2$. Find the velocity after 5 seconds.
- 2. A stone is thrown vertically upwards with an initial velocity of 15 m/s. Find the time taken for the stone to reach its maximum height.
- 3. A car travels with an initial velocity of $20\,\mathrm{m/s}$ and accelerates at $2\,\mathrm{m/s}^2$ for 10 seconds. Find the distance traveled by the car.
- 4. A body is moving with an initial velocity of $10 \,\mathrm{m/s}$ and decelerates at $3 \,\mathrm{m/s}^2$. Find the time it takes for the body to come to rest.
- 5. A car starts from rest and accelerates at $3 \,\mathrm{m/s}^2$ for 8 seconds. Find the distance it travels during this time.
- 6. A particle is moving with an initial velocity of 5 m/s and accelerates at 4 m/s^2 . Find the velocity after 3 seconds and the distance traveled during this time.
- 7. A ball is dropped from a height. Find the time taken for the ball to reach the ground, assuming the acceleration due to gravity is $9.8 \,\mathrm{m/s^2}$ and the initial velocity is 0.
- 8. A rocket is launched vertically with an initial velocity of $50 \,\mathrm{m/s}$ and accelerates at $10 \,\mathrm{m/s^2}$. Find the time taken for the rocket to reach a height of $1000 \,\mathrm{m}$.
- 9. A train moves with an initial velocity of $10\,\mathrm{m/s}$ and decelerates at $0.5\,\mathrm{m/s^2}$ until it comes to a stop. Calculate the total distance covered during the deceleration.

10. A car accelerates uniformly from $0\,\mathrm{m/s}$ to $30\,\mathrm{m/s}$ in 10 seconds. Find the acceleration and the distance covered during this time.

\mathbf{N}

Iultiple-Choice Questions	
1.	A car accelerates from rest at $4 \mathrm{m/s}^2$. What is its velocity after 8 seconds?
	A. 24 m/s B. 32 m/s C. 36 m/s D. 40 m/s
2.	A stone is dropped from a height and falls under gravity. How long will it take to fall 20 meters? (Assume $g=10\mathrm{m/s}^2$)
	A. 2 secondsB. 4 secondsC. 3 secondsD. 5 seconds
3.	A ball is thrown vertically upwards with an initial velocity of $12\mathrm{m/s}$. What is the time taken for the ball to reach the maximum height? (Assume $g=9.8\mathrm{m/s}^2$)
	A. 1.2 secondsB. 1.5 secondsC. 1.8 secondsD. 2.0 seconds
4.	A car starts from rest and accelerates uniformly at $2\mathrm{m/s^2}$. How far will the car travel in 10 seconds?
	A. 50 metersB. 100 metersC. 150 metersD. 200 meters
5.	A body is moving with an initial velocity of $20\mathrm{m/s}$ and accelerates at $5\mathrm{m/s}^2$ for 4 seconds. What will be its final velocity?
	A. 40 m/s B. 50 m/s C. 60 m/s D. 70 m/s

 $\label{thm:com} \mbox{Visit our website: } \mbox{\bf Mathaversity.com}$