

A Level Maths

Topic: Recurrence Relations

Instructions

Answer all questions. Show all necessary steps. Use the recurrence relation to find the required terms or closed-form expressions.

Practice Problems

Generating Terms from Recurrence Relations:

- 1. Given $u_1 = 3$ and $u_{n+1} = u_n + 4$, find u_2, u_3, u_4, u_5 .
- 2. The recurrence relation is $u_1 = 2$, $u_{n+1} = 2u_n + 1$. Find the first 5 terms.
- 3. For $u_1 = 5$ and $u_{n+1} = 3u_n 2$, find u_2 to u_5 .
- 4. The recurrence relation is $u_1 = 1$, $u_{n+1} = \frac{1}{2}u_n$. Find u_2, u_3, u_4 .

Finding Closed Form and Solving Problems:

- 5. The recurrence relation is $u_1 = 3$, $u_{n+1} = u_n + 5$. Find a formula for u_n in terms of n.
- 6. Given $u_1 = 2$, $u_{n+1} = 3u_n$, show that $u_n = 2 \cdot 3^{n-1}$.
- 7. For the recurrence $u_1 = 7$, $u_{n+1} = u_n 2$, find the smallest n such that $u_n \leq -1$.
- 8. The recurrence relation is $u_1 = 4$, $u_{n+1} = 2u_n + 3$. Find u_2 , u_3 , and then write an expression for u_4 .

Multiple-Choice Questions

- 1. Given $u_1 = 5$, $u_{n+1} = u_n + 3$. What is u_4 ?
 - A. 11
 - B. 14
 - C. 17
 - D. 18
- 2. If $u_1 = 2$ and $u_{n+1} = 2u_n$, what is u_5 ?
 - A. 16
 - B. 24
 - C. 32
 - D. 48
- 3. The recurrence $u_1 = 1$, $u_{n+1} = 3u_n + 1$. Find u_3 .
 - A. 9
 - B. 10
 - C. 13
 - D. 14
- 4. Which of the following is a correct closed-form formula for u_n if $u_1 = 2$ and $u_{n+1} = 2u_n$?
 - A. $u_n = 2n$
 - B. $u_n = 2^n$
 - C. $u_n = 2 \cdot 2^{n-1}$
 - D. $u_n = 2 + 2n$
- 5. Given $u_1 = 10$, $u_{n+1} = u_n 3$, for what value of n is $u_n = 1$?
 - A. 2
 - B. 3
 - C. 4
 - D. 4

Visit our website: Mathaversity.com