A Level Maths ## **Topic:** Recurrence Relations ### Instructions Answer all questions. Show all necessary steps. Use the recurrence relation to find the required terms or closed-form expressions. ## Practice Problems ### Generating Terms from Recurrence Relations: - 1. Given $u_1 = 3$ and $u_{n+1} = u_n + 4$, find u_2, u_3, u_4, u_5 . - 2. The recurrence relation is $u_1 = 2$, $u_{n+1} = 2u_n + 1$. Find the first 5 terms. - 3. For $u_1 = 5$ and $u_{n+1} = 3u_n 2$, find u_2 to u_5 . - 4. The recurrence relation is $u_1 = 1$, $u_{n+1} = \frac{1}{2}u_n$. Find u_2, u_3, u_4 . #### Finding Closed Form and Solving Problems: - 5. The recurrence relation is $u_1 = 3$, $u_{n+1} = u_n + 5$. Find a formula for u_n in terms of n. - 6. Given $u_1 = 2$, $u_{n+1} = 3u_n$, show that $u_n = 2 \cdot 3^{n-1}$. - 7. For the recurrence $u_1 = 7$, $u_{n+1} = u_n 2$, find the smallest n such that $u_n \leq -1$. - 8. The recurrence relation is $u_1 = 4$, $u_{n+1} = 2u_n + 3$. Find u_2 , u_3 , and then write an expression for u_4 . ## Multiple-Choice Questions - 1. Given $u_1 = 5$, $u_{n+1} = u_n + 3$. What is u_4 ? - A. 11 - B. 14 - C. 17 - D. 18 - 2. If $u_1 = 2$ and $u_{n+1} = 2u_n$, what is u_5 ? - A. 16 - B. 24 - C. 32 - D. 48 - 3. The recurrence $u_1 = 1$, $u_{n+1} = 3u_n + 1$. Find u_3 . - A. 9 - B. 10 - C. 13 - D. 14 - 4. Which of the following is a correct closed-form formula for u_n if $u_1 = 2$ and $u_{n+1} = 2u_n$? - A. $u_n = 2n$ - B. $u_n = 2^n$ - C. $u_n = 2 \cdot 2^{n-1}$ - D. $u_n = 2 + 2n$ - 5. Given $u_1 = 10$, $u_{n+1} = u_n 3$, for what value of n is $u_n = 1$? - A. 2 - B. 3 - C. 4 - D. 4 Visit our website: Mathaversity.com